Dr. Marty Petrovic
Department of Horticulture
Cornell University
Principles of Water Movement and Drainage

• Normal or matrix water flow
• Preferential flow

Principles of Water Movement and Drainage, Normal water flow

Preferential Flow-finger flow in sand
Principles of Water Movement and Drainage, Preferential Flow—Earthworm channels

Typical turfgrass symptoms of soil problems

• shallow but extensive root system
• little or no roots below 4 inches
• little or no top growth (immediately after a major use of the site)
• off-color, very chlorotic tissue
Typical turfgrass symptoms of soil problems

- wilts easily, low turf density with weeds
- poor response to fertilization and soil related pesticides
- poorly drained, prolonged wet soils, making the use difficult
- water easily runs off the turf surface or collects in low spots

Causes of soil problems

- soil compaction during construction (often very deep compaction)
 “big equipment” syndrome
 hire contractors with turf construction experience

Causes of soil problems

- soil compaction from normal use such as
 games, golfing and normal maintenance
 often resulting in surface soil compaction (0 - 4 inches deep)
Causes of soil problems

• soil compaction from excess use
 - not enough fields
 - too many golfers
 - need for sidewalks, paths, roads, etc.

Causes of soil problems

• Improper soil for the intended use of the site

• poor construction techniques:
 soils too wet
 used heavy equipment

Causes of soil problems

wet soils

• poorly drained sites or sites with no drainage outlet

• use during wet conditions
 rutting (soil displacement)
 more compaction with wet soils than dry soils, why?

• thatch and other layers that impede water flow (perched water table concept)
What are we trying to manage?

Physical Properties

- Water flow in and through soils (drainage)
- Soil strength (root growth)
- Aeration (root growth, microbial activity, chemical reactions)
- Temperature (indirectly with drainage)

How do you know you have poor quality soil???
Step Back and Take a Look
Site Factors

• Topography

• Orientation

• Indicator Plants
SOIL DIAGNOSTIC TOOLS

Check percolation rate

Analyzing Existing Vegetation

- Identify plant species

- Note any indications of plant stress

- Note presence of any noxious weeds
KEY RESOURCES for PLANT ID

Don't forget to determine chemical properties

Options for managing soil physical problems

Reduce and/or change traffic patterns
 • control traffic patterns:
 use paths, fences, berms, etc. to direct traffic
Options for managing soil physical problems
Reduce and/or change traffic patterns
• control traffic patterns: use signs

Options for managing soil physical problems
Reduce and/or change traffic patterns
• control traffic patterns: use signs

Options for managing soil physical problems
control traffic patterns: use signs
Options for managing soil physical problems

Control traffic patterns: use compaction reducing materials: grass pavers, plastic grids

Built it correctly in the first place!

• Select the correct soil for the intended use: the more use the more sand
• Care in not over compacting the soil during construction
• Determine an acceptable level of compaction and stay within this range by testing during construction

Options for managing soil physical problems: Cultivation

Things to consider when using cultivation to correct compaction:

• Depth of cultivation must be deeper than compaction zone- or it is not as effective
• Normal traffic compacts the surface 3-4 inches, mostly in the surface inch, except for sand over finer texture soil (why?)
Things to consider when using cultivation to correct compaction:

- soil moisture content: the drier the better...
 cultivation can be less effective in wet soils, but!!
- cultivation can compact the soil by causing a cultivation pan below the depth of cultivation
- but dry soils are hard to cultivate

What is a cultivation pan?

A small zone of highly compacted soil below the depth of cultivation.
What is a cultivation pan? 2 months later

Types of Cultivation

Hollow tine coring:
- shallow-3" to deep-12"
- typical aerifiers to deep tine aerifiers (Vertidrain)
- holes ¼” to ¾ “
- spacing 2” to 6”

Hollow tine coring: shallow coring
Hollow tine coring: deep coring

Water injection cultivation

Water injection cultivation
Cultivation can reduce the effects of compaction two ways:

- lowering the bulk density by removing soil or lifting the soil
- creating a hole at the soil surface which allows:
 - water movement into the soil
 - gas exchange between the soil and the above ground atmosphere

How often should you cultivate?

Remember cultivation is a stress on the turf so avoid stress periods!

- once before or after each intense use period (sport season, golf season, etc.)
- minimum: once or twice a year for areas with only one major use period
- maximum: 4 to 6 times per year
- less often with deep type cultivation unless a very aggressive root zone modification program is being followed
When should you cultivate?

• Before or just after a major intense use period
• Just before a major turfgrass root production period
 early spring
 early fall

When should you cultivate?

• What about weed issues?
 Crabgrass - no issue
 Annual bluegrass - early fall cultivation encourages more annual bluegrass

Improve Water Movement and Drainage
Improve Water Movement and Drainage: Normal water flow

Improve Water Movement and Drainage
surface drainage problems

Improve Water Movement and Drainage
Increase surface drainage
• Improve slope (>2 %, crowning)
Improve Water Movement and Drainage
Increase surface drainage-cultivation

Improve Water Movement and Drainage
Increase surface drainage: wetting agents in sand
Improve Water Movement and Drainage

Increase surface drainage: wetting agents in sand

Improve Water Movement and Drainage: Water repellent soil benefits from wetting agent

Improve Water Movement and Drainage

Increase drainage: Trench with drain pipe

Figure 4. A herringbone drainage design on an athletic field.
Improve Water Movement and Drainage

Increase drainage: Vertical trench

Figure 3. A vertical trench will rapidly remove surface water.

Improve Water Movement and Drainage

Increase drainage: sand grooving-injection

Figure 4. Soil profile of sand spray (Cambridge) zones.

Improve Water Movement and Drainage

• Amend root zones
Improve Soils by Modification

• Goals: improve one or more of the following soil characteristics-

Physical properties:
- infiltration and drainage
- compaction resistance
- stability to traffic
- aeration
- water holding capacity

Improve Soils by Modification

• Goals: improve one or more of the following soil characteristics-

Chemical properties:
- nutrient holding capacity (cation exchange capacity)
- nutrient source and pH

Improve Soils by Modification

Goals: improve one or more of the following soil characteristics-

Biological properties:
- general microbial activity
- disease suppression
- nutrient transformation and pesticide degradation
What to do first, analyze your site!

- Site analysis of soil properties includes checking:
 - drainage
 - rooting
 - footing
 - general condition of the area (shoot growth, appearance)
 - soil physical and chemical properties by testing

Selecting an amendment that best suits your needs

organic amendments:
 - improve water and nutrient holding capacity
 - improve microbial activity
 - reduce pesticide and nutrient leaching
 - provide nutrients
 - suppress diseases

Organic amendments: What to look for!

- organic matter content (if used on sand based areas) of at least 90%
- if compost, is it completely composted?
- level of salts and other contaminants
- physical consistency: can you spread it? too dusty, etc.
Selecting an amendment that best suits your needs

Inorganic amendments:
• physically dilute soil
• used to improve internal porosity
• not easily compressed
• Stable, not easily decomposted
• require large amounts to make a difference in some situations
• some improve nutrient and water retention

Some Organic Amendments
• peat
• yard wastes
• sewage sludge (bio-solids)
• industrial and pharmaceutical wastes
• agricultural manures
• municipal solid wastes (MSW)
• plant bi-products

Peat Moss
<table>
<thead>
<tr>
<th>Properties</th>
<th>Sphagnum</th>
<th>Reed-Sedge</th>
<th>Peat Humus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>Canada bogs</td>
<td>"</td>
<td>Peat Humus</td>
</tr>
<tr>
<td>Age</td>
<td>young</td>
<td>old</td>
<td>very well decomposed</td>
</tr>
<tr>
<td>Stability</td>
<td>long-term?</td>
<td>more</td>
<td>very</td>
</tr>
<tr>
<td>Water holding</td>
<td>10-14x</td>
<td>4-8x</td>
<td>3-5x</td>
</tr>
<tr>
<td>O.M. content</td>
<td>~95%</td>
<td>>85%</td>
<td>92% or lower</td>
</tr>
<tr>
<td>pH</td>
<td>3.3 - 3.5</td>
<td>5.5 - 7.0</td>
<td>acidic</td>
</tr>
<tr>
<td>C:N ratio</td>
<td>high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Density</td>
<td>low</td>
<td>dense/fine</td>
<td>dense/fine</td>
</tr>
<tr>
<td>Use</td>
<td>Sand-based</td>
<td>topdressing</td>
<td>topdressing</td>
</tr>
</tbody>
</table>
Yard Wastes
• grass, leaves, twigs, brush
• variable in quality
• breakdown in the root zone more quickly
• lower in nutrients
• contaminants
• soluble salt concentration is low

Bio-solids
• sewage sludge
• nutrient rich (especially N and P)
• pH typically 6.0 – 7.5
• treated to reduce pathogens
• may contain:
 heavy metals
 organic contaminants

Agricultural Manures
• chicken, dairy, turkey….
• fresh, raw > odor, weed seeds
• delay planting 2-4 weeks
• nitrogen subject to leaching
• aged is more stable
Food Wastes

- from food processors, restaurants, institutions
- high in popularity
- typically:
 - rich in nutrients
 - may have elevated salinity

Composts can be made from

- leaves and grass clippings - yard trimmings
- animal manures
- food wastes
- paper mill products
- bio-solids (sewage sludge)
- municipal solid waste - garbage

Organic Amendments

must be composted to:

- reduce volume
- improve the stability and physical condition of the materials
- reduce pathogens/weeds in the material
COMPOSTS for IMPROVING SOILS

in sandy soils:
- ↑ water holding ability
- provide some nutrients
- ↑ nutrient retention
- ↑ microbial activity

in clay soils:
- ↑ air and water permeability
- improve aggregation
- ↓ surface crusting
- provide some nutrients
- ↑ microbial activity

PROPERTIES OF A GOOD QUALITY COMPOST

they are not all the same

Compost Handling is Critical

Turning Curing Shipping

Time in Transit Site Placement Storage
APPEARANCE

- should resemble a dark topsoil
- be friable - loose, crumbly
- free of large stones, pieces of wood, trash
- appropriate size: 1/4” - 3/8”

pH

- pH can be 5.0 - 8.5
- nutrient deficiencies and toxicities can occur when soil pH is < 5.5 or > 8.5

METALS

- from municipal bio-solids (sewage sludges) often have heavy metal content (As, Cd, Cu, Pb, Mo, Ni, Mo, Zn)
- regulated to reduce the potential toxicity to humans, animals or plants
- state and federal agencies have established maximum allowable levels – in New York they are highly regulated
METALS
- some of these elements are required by plants
- reported on a dry weight basis
 ppm
 mg/kg

MOISTURE CONTENT
moisture content 40-50%
ideal for handling, surface application

wet composts (>60%):
 form clumps
 difficult to spread evenly
 hard to till in

dry composts (<20%)
 easy to handle
 may produce excessive dust
 hard to apply when windy

Bulk Density
Measured in g/cm³ and converted to lbs/yd³
- gives a good idea of porosity
- about 40-60% porosity

Most compost > 700-1200 lbs/yd³
Preferred > 800 – 1000 lbs/yd³
SOLUBLE SALTS

- excessive levels can cause injury to plants
 - ↓ water absorption
 - be toxic or both

- concentration where injury occurs depends:
 - type of salt
 - salt tolerance of plant
 - how compost will be applied

SOLUBLE SALTS

- measured in dS or mmhos/cm

- additions of amendments can contribute or dilute soluble salt concentrations

- manures tend to be higher in SS
- yard wastes and bio-solids tend to be lower

Maturity

assesses the level of biological activity in a moist, warm, well aerated compost pile

determined by:
 - measuring CO₂ and volatile ammonia
Maturity

immature compost - unstable
 critters consuming N and O
 generating heat + CO₂ + water vapor
 ammonia or volatile organic acids

mature compost - stable
 little N and O consumed
 little heat generated

Solvita Maturity Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Approximate Stage of the Compost Process</th>
<th>Major Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Highly mature, well aged, for all uses</td>
<td>FINISHED Compost</td>
</tr>
<tr>
<td>7</td>
<td>Well matured, cured, ready for most uses</td>
<td>ACTIVE Compost</td>
</tr>
<tr>
<td>6</td>
<td>Compost finishing curing, ready for some uses</td>
<td>ACTIVE Compost</td>
</tr>
<tr>
<td>5</td>
<td>Curing can be started; limited uses</td>
<td>RAW Compost</td>
</tr>
<tr>
<td>4</td>
<td>Compost in moderately active stage</td>
<td>RAW Compost</td>
</tr>
<tr>
<td>3</td>
<td>Very active compost; not ready for most uses</td>
<td>RAW Compost</td>
</tr>
<tr>
<td>2</td>
<td>Very active, fresh compost</td>
<td>RAW Compost</td>
</tr>
<tr>
<td>1</td>
<td>Fresh, raw compost; extremely unstable</td>
<td>RAW Compost</td>
</tr>
</tbody>
</table>

ODOR

• “earthy aroma” - like in the woods or forest

• should not be offensive - strong ammonia or sulfur-like smell
ORGANIC MATTER CONTENT

• not all the material in composts is OM can vary 20-80%
• lab can determine OM content
• OM content may not tell you about the “quality” of the OM

Composting Method Influences Organic Matter Content of Composts

Generally High OM Levels (30-50%)

Low OM Levels (12-35%)

CARBON : NITROGEN RATIO

• when <10:1 critters may liberate ammonia from OM
• when >20:1 may indicate compost is not finished
• when >30:1 critters may immobilize N not available to plants
NUTRIENTS

- Composts have ↓ amount of nutrients
- Most N in organic form - slow release
- Small amount of quick release N
 only 10-20% of total N available 1st season
- Animal composts ↑ in nutrients than yard waste composts
- Need large amounts

Compost Comparison

<table>
<thead>
<tr>
<th></th>
<th>Poultry</th>
<th>Dairy</th>
<th>Yard Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Moisture</td>
<td>26.8</td>
<td>47.1</td>
<td>54.3</td>
</tr>
<tr>
<td>% OM</td>
<td>37.3</td>
<td>13.4</td>
<td>49.1</td>
</tr>
<tr>
<td>pH</td>
<td>8.8</td>
<td>8.4</td>
<td>7.6</td>
</tr>
<tr>
<td>% Total N</td>
<td>1.53</td>
<td>.7</td>
<td>.8</td>
</tr>
<tr>
<td>Amm N (mg/kg)</td>
<td>569</td>
<td>2.37</td>
<td>18.4</td>
</tr>
<tr>
<td>Soluble salts</td>
<td>8.04</td>
<td>1.73</td>
<td>2.42</td>
</tr>
</tbody>
</table>

WEED SEEDS

- If properly composted and stored should not contain many seeds
- The process will destroy nearly all viable seeds
GUIDELINES FOR CHOOSING

Choose a reputable and trusted supplier

Know:
- compost type
- composting process and length of composting
- how compost handled when finished

Obtain:
- a complete analysis from supplier

GUIDELINES FOR CHOOSING

Appearance and Odor

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>uniform</td>
</tr>
<tr>
<td>Color</td>
<td>brown to black</td>
</tr>
<tr>
<td>Size (surface applications)</td>
<td>1/4 to 3/8 inch</td>
</tr>
<tr>
<td>Size (incorporated)</td>
<td>1/4 to 1/2 inch</td>
</tr>
<tr>
<td>Odor</td>
<td>earthy</td>
</tr>
</tbody>
</table>
CHEMICAL PROPERTIES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>0.4 – 3.0%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.2 - 1.5%</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.4 – 1.5%</td>
</tr>
<tr>
<td>pH</td>
<td>6.0 – 8.0</td>
</tr>
</tbody>
</table>

PROPERTIES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C:N ratio</td>
<td>~ 15:1 – 30:1</td>
</tr>
<tr>
<td>Moisture content</td>
<td>30 – 60%</td>
</tr>
<tr>
<td>Organic matter</td>
<td>>30%</td>
</tr>
<tr>
<td>Solvita Maturity Index</td>
<td>5-8</td>
</tr>
<tr>
<td>Soluble salts</td>
<td>EC <4.0 dS</td>
</tr>
</tbody>
</table>

Some Other Considerations

- Compost Properties are Constantly Changing
 - The compost you received last year will not have the same properties as it did when you received it
 - Perform analyses frequently
 - The more mature and stable, the more slowly the material will change

- Storage and Handling can Dramatically Affect Compost Properties
When establishing turf...

for soil incorporation (into 4-6” of soil):

1” layer = 3.1 cubic yards
2” layer = 6.2 cubic yards

• want thorough mixing
• do not want layers to form at surface
• may need several passes with tiller

Selecting an amendment that best suits your needs

Inorganic amendments:

• physically dilute soil
• used to improve internal porosity
• not easily compressed
• Stable, not easily decomposted
• require large amounts to make a difference in some situations
• some improve nutrient and water retention

Inorganic amendments include:

• sand: quartz sand is preferred (chemically inert and physical stability)
• calcine clay: made by heating clay minerals to temperatures close to 700 degrees C and processing them to sand particle size
• calcine diatomite: made by calcinating diatomaceous earth (a fine siliceous deposit) and processed to sand particle size
Inorganic amendments include:

- zeolite: this mineral occurs naturally, large capacity to retain nutrients, processed to sand size particles
- expanded shale: a calcined shale
- gypsum: calcium sulfate

Selecting an amendment that best suits your needs

| Soil Amendments-Properties | Bulk Density | CEC
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Sand | 1.23-1.35 | < 1
| Caliche Clay | 0.5-0.6 | < 1
| Caliche Dolomite | 0.36 | 100-200 (10-20)
| Zeolite | 0.7 | 10-200 (10-200)
| Pestic | 0.1-0.3 | 125-150 (3-6)

* CEC in greeen mix
Types of soil modification

- **total modification**: at establishment amending a major portion of the root zone (6-12”)
- **partial modification**: change in the surface 1-4” of the root zone
- **topdressing**: is a long term process of changing the root zone. It is done often done in conjunction with cultivation to get more of the amendment deeper into the soil.

Benefits of soil modification:
- establishment
Benefits of soil modification: establishment
Benefits of soil modification: establishment

Soil amendments: How stable are they?

Amendments can break down due to weathering and crushing forces from traffic

Soil Amendments: How stable are they?

<table>
<thead>
<tr>
<th>Soil Amendments - Weathering Stability</th>
<th>Unchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite Clay</td>
<td>98</td>
</tr>
<tr>
<td>Lime (Pulverized)</td>
<td>98</td>
</tr>
<tr>
<td>Calcium Bluestone (Asphalt)</td>
<td>94</td>
</tr>
<tr>
<td>Zeolite (6)</td>
<td>87-92</td>
</tr>
<tr>
<td>AM Products</td>
<td>96</td>
</tr>
</tbody>
</table>

A value < 88% is considered not stable (comp. mountain soil)
Soil amendments: How stable are they?

<table>
<thead>
<tr>
<th>Soil Amendments Stability</th>
<th>Impact (NPR%, min)</th>
<th>After (% change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.33</td>
<td>0.33 (0%)</td>
</tr>
<tr>
<td>Calcia Clay</td>
<td>0.66</td>
<td>0.64 (4%)</td>
</tr>
<tr>
<td>Calcia Diatomite</td>
<td>0.74</td>
<td>0.67 (9.5%)</td>
</tr>
<tr>
<td>Calcia Thatch</td>
<td>0.54</td>
<td>0.50 (8%)</td>
</tr>
<tr>
<td>Southern Zoysia</td>
<td>0.58</td>
<td>0.57 (2%)</td>
</tr>
<tr>
<td>Southall Zoysia</td>
<td>1.01</td>
<td>1.01 (0%)</td>
</tr>
<tr>
<td>SMM Calciocrete</td>
<td>0.99</td>
<td>1.01 (2%)</td>
</tr>
<tr>
<td>SMM All Purpose</td>
<td>2.41</td>
<td>1.22 (45.5%)</td>
</tr>
</tbody>
</table>

NPR%: Average particle diameter, TA Abrasion Test

Thatch management: What is thatch?

- layer of dead or dying organic matter composed of roots and stems (rhizomes, stolons and crowns) and little or no clippings
Thatch management:

Properties of thatch

- well aerated having very large pores
- resists compaction
- little or no water and nutrient holding capacity
- acts as a bio-filter of pesticides
- greater temperature extremes than soil

Thatch management:

Problems with thatch

- root often limited to thatch layer
- more drought susceptible
- lower tolerance of high and low temperature
- more insect and disease problems
- scalping
- poor root zone pest control
- increase in pesticide phytotoxicity

Thatch management:

Why does thatch accumulate?

- imbalance between production and degradation of organic material
- some species and cultivars produce more thatch (more lignin)
- too high or too low nitrogen applications
- late fall applied nitrogen (more root growth)
Thatch management: Why does thatch accumulate?

• high mowing heights (more roots)
• low soil pH < 6)
• temperature and moisture extremes (low microbial break down)
• some pesticides increase thatch by: increasing growth or reducing reduction

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Thatch (mm)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>12</td>
<td>4.7</td>
</tr>
<tr>
<td>lime</td>
<td>3</td>
<td>6.7</td>
</tr>
<tr>
<td>gypsum</td>
<td>4</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Thatch management:

• modify situations if they are present, pH

Thatch management: cultivation and topdressing
Thatch management:

- cultivation and topdressing

Changes in thatch as affected by cultivation

<table>
<thead>
<tr>
<th>Number</th>
<th>Depth</th>
<th>Weight</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>15</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>5</td>
<td>6.4</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>2</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Numbers of cultivations by Brockman, Mclean and Buxton (1980)

Thatch management:

- cultivation and topdressing

Cultivation effects on surface soil (0-3 cm) organic matter

<table>
<thead>
<tr>
<th>Treatment</th>
<th>6 June</th>
<th>11 Aug.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19.2</td>
<td>18.1</td>
</tr>
<tr>
<td>Cultiv + sodl.</td>
<td>4.1</td>
<td>7.7</td>
</tr>
<tr>
<td>Hydropl.</td>
<td>9.7</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Going to Nace, from R. Crowe, USDA, 1987, Reprinted
Thatch management:

- Dethatching, how effective is it?
 Only 2-5% thatch removal

Final comments