### Vegetable System Trial Results

2005







#### Total weed biomass in sweet corn at tasseling





#### Sweet Corn Pest Damage, 2005

#### ECB at Two Sampling Dates



#### Sweet Corn Marketable Yield, 2005







#### Sweet Corn Plots, Total Biomass









### Cabbage Transplant Dates

System 1—July 19
System 2—July 13
System 4—July 14

 System 1 plants were visibly smaller for several weeks









#### Flea Beetle Levels, 2005

Date

After Surround + Entrust spray on 8/5, flea beetles per plant decreased from 12.1 (8/3) to 0.17 (8/8)





% unmarketable Heads

#### % Unmarketable Cabbage, 2005

Treatment

# Overall Cabbage Insect Damage, 2005

Heads with Visible Worm Damage—9.6%

- Unmarketable Heads—3.8%
- Weight of Unmarketable Heads Removed by Treatment to Calculate Marketable Yield per Acre



### Two sampling dates

Cabbage yield in rep 4 increased by 29.5% between 10/4 and 10/17. We resampled on the second date to check growth over that time. There was very little splitting.
 Heavy rain during that time.

#### Chickweed Density in Cabbage, 10/5/05





Warm- and Cool-Season Weeds in Cabbage, 10/5/05

#### Cabbage Weed Densities, 2005







### Pea Yield Data

| Pea Yield (Fresh<br>Lb/Acre)                   | 3535 (580)   |
|------------------------------------------------|--------------|
| Total Aboveground Pea<br>Biomass (Dry Lb/Acre) | 1307 (154)   |
| Harvest Index                                  | 31.2% (1.8%) |



## Cover Crop Establishment

### Cover crops in the Cabbage

- Bell bean dry biomass increased from 249 to 776 Lb per Acre from 10/5 to 11/7
- The second figure represents roughly 30 lb/A nitrogen
- Japanese millet had high numbers per acre, but emergence was very slow and growth was poor