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White mold caused by the fungus, Sclerotinia sclerotiorum is a severe disease of snap 
bean that results in crop loss by reducing the number of harvestable pods.  The industry standard 
is for snap bean fields to apply a fungicide for white mold control when 10% of the plants have 
at least one bloom. However, rapid and accurate detection of white mold risk remains evasive, 
and currently is, at best, a manual and labor-intensive exercise. The overarching goal of this 
research therefore is to develop a spatially-explicit white mold risk model, derived from remote 
sensing imaging systems, mounted on unmanned aerial systems (UAS).  We have three main 
objectives to address this challenge: i) identify spectral signatures for the onset of blooming to 
optimally time fungicide application, ii) investigate spectral characteristics of white mold onset 
in the snap bean crop, and iii) evaluate the coupling of white mold with UAS-based metrics, such 
as leaf area index (LAI), row and plant spacing, and digital elevation models.    

The study area was located at the New York State Agricultural Experiment Station, 
Cornell University (Geneva, NY, USA). Field trials were designed to study the effects of 
planting time on the occurrence and severity of white mold. This staggered planting time design 
allowed the UAS to capture snap bean plants at different stages of blooming and white mold 
onset, all in the same imagery. A DJI Matrice-600 UAS was utilized to acquire the imagery; the 
system boasts a camera platform with a high spatial resolution color (RGB) camera, Headwall 
Photonics Nano imaging spectrometer (272 color bands/channels; ranging between 400-1000 
nm), and a Velodyne VLP-16 light detection and ranging (LiDAR) system. High frequency 
flights were executed when portions of the field started to bloom.   

To accomplish the first two objectives, the hyperspectral imagery from the Headwall 
Nano imaging spectrometer had to be ortho-rectified, calibrated into reflectance, and then 
mosaicked using GPS/IMU (inertial measurement unit) information. The empirical line method 
(ELM) was used to calibrate the radiance images into reflectance. The empirical line method 
uses white and black panels (with known reflectance spectra) in the field to develop calibration 
coefficients that will force the radiance spectra of each pixel in the scene to reflectance. Figure 1 
shows what the calibration step does to the spectra of the calibration panels.  

 
Figure 1: Radiance spectra (left) of calibration panels, converted to reflectance (right) using the Empirical 
Line Method.  

 

 



 

The ELM method allows for conversion of the atmosphere effects in the radiance spectra 
(left) to reflectance results in a bright, flat reflectance curve for the white panel (Figure 1; right, 
topmost curve), and a dark, flat curve for the black panel (Figure 1; bottom-right). This step is 
crucial to growers that ensure that imagery and associated products are illumination-independent, 
i.e., that observed changes are not due to illumination differences between days or viewing 
geometry (sun-plant-sensor angles). This approach is crucial to the adoption of UAS-based 
precision agriculture. 

Pure pixels, or pixels that contain a single, specific object, i.e., these pixels are not mixed 
spectra of various crop components, of snap bean plants were separated using a supervised 
classification process, followed by stepwise discriminant analysis to determine which 
wavelengths are critical to differentiating between blooming and non-blooming snap bean plants. 
This same method was used on imagery later in the season to discriminate between plants that 
were affected by white mold or not. An example of pure pixels being separated (highlighted in 
red) is shown in Figure 2.  

 

 
Figure 2: Pure pixels separated using the Spectral Angle Mapper (SAM) technique; the 

red pixel only contain plant (foliage) material 
 

First stage classification models will be developed using linear discriminant analysis and 
principal components analysis (PCA), while partial least squares (PLS) regression will be used to 
create binary logistic regression models to differentiate between bloom/no bloom and mold/no 
mold categories. These models will be evaluated for accuracy andprecision, using snap bean 
ground truth data from the fields, monitored intensively by Cornell University researchers. 
Figure 3 below shows a portion of ground truth locations in the snap bean field. 



 

 
Figure 3: Ground truth plots used to evaluate the efficacy of bloom and white mold detection 

methods in snap bean fields 
  

We envision that the risk models created during this study will lead to more judicious use 
of fungicide in snap bean fields, with both financial and sustainability benefits. We will present 
early results of this project, focusing on the 2017 summer field season, data collection, and UAS-
based snap bean bloom detection. We also will highlight the lessons learned and discuss the 
potential for UAS sensing in precision agriculture applications. 

 
 
 


