

Cornell Cooperative Extension Vegetable Program

Exploring Nitrogen Dynamics in Cabbage

Christy Hoepting

¹Cornell Cooperative Extension Vegetable Program

2017 Empire State Producers Expo: Cabbage Session Syracuse, NY: January 17, 2017

Acknowledgements

Funding provided by:

NY Cabbage Research & Development Program

Grower Cooperators:

- Steve Starowtiz, S.J. Starowitz Farms, North Byron, NY (trial)
- Dean & Joe Brightly, Brightly & Sons, Hamlin, NY (trial)
- Eric Hansen, Hansen Farms, Stanley, NY
- Mike Riner and Emma Long, CY Farms, Elba, NY
- John Voelpel, Voelpel Farms, Newfane, NY
- Colby Homestead Farms, Spencerport, NY
- Torrey Farms, Elba, NY
- Star Grower, Elba, NY

Acknowledgements

Technical Advisor:

Steve Reiners, NYSAES

CVP Program Assistants:

- Elizabeth Buck (2014-2015)
- Cordelia Hall (2014)
- Missy Call (2015)
- Amy Celentano (2016)
- Mariam Taleb (2016)

Fertilizer provided by:

- Growmark FS, Knowlesville
- CY Farms

Mariam, Amy & Christy

Nitrogen stabilizer provided by:

John Boston, Dow AgroSciences

Nitrogen Dynamics in Cabbage

- CRDP made cabbage fertility with an emphasis on nitrogen as one of their highest research priorities in 2014
- Concerned that too much nitrogen left in fields following harvest of summer cabbage may be causing lodging of following winter wheat crop

Lodging of winter wheat

Cornell Recommendations

Nitrogen:

- Cornell recommends 100 to 120 lb/A
- 40 lb broadcast and incorporated prior to planting
- 40 lb in the band at planting
- 20 to 40 lb side-dressed 4 weeks after planting

A lot of variability in rate & timing of N application

Nitrogen Use in Summer Cabbage in New York

Rate (lb/A) and Timing of Nitrogen Application				Ratio			
Total	Pre- & At- Planting	Side- Dress #1	Side- dress #2	Planting	Side-dress		
					#1	#2	
		(4 wks)	(6 wks)				
72.5	72.5			100	0		7
105	105			100	0		
150	150			100	0		— All at planting
210	210			100	0		
129	89.7	39.1		69	31		Two-thirds
152	98.4	53.3		65	35		at planting
157	75	82		48	52		50:50 split
185	80	75	30	43	41	16	30.30 Split
150	60	45	45	40	30	30]
141	21	120		15	85		More at
185	42.7	142		23	77		side-dress

Total lb/A: Range; 72.5 to 210 lb/A; Average: 149 lb/A

Ratios of planting to side-dress range from 100:0 to 15:85

Objectives

- To study nitrogen dynamics in summer cabbage with respect to:
 - total rate applied
 - timing of application (proportion applied pre-plant compared to side-dressed)
 - Use of nitrogen stabilizers
- To refine use of nitrogen in cabbage:
 - To improve efficiency
 - Optimize rates
 - To reduce environmental contamination and/or problems with lodging in following winter wheat crop

Nitrogen Use in Cabbage

Fraction of days from planting to harvest

2014 On-Farm Small-Plot Trial

- 5 rates of total applied nitrogen:
 - 31 lb/A
 - 66 lb/A
 - 132 lb/A
 - 197 lb/A
 - 262 lb/A
- 3 application timings ratio at plant: side-dress
 - 100%: 0%
 - 50%: 50%
 - 25%: 75%
- Included no applied nitrogen (= 2.2 lb from MAP)

2015 Case Studies

- 4 Fields (5 acre sections divided into 4 replicates)
 - 3 summer cabbage (c.v. Transam)
 - 1 storage cabbage, red (c.v. Kilmaro)
- Soil nutrients: Available NO₃-N
 - Pre-fertilizer
 - Pre-side-dress
 - Early cupping
 - Heading
 - Harvest)
- Tissue Analysis: %N
 - Early Cupping
 - Harvest (head & leaves)

- Yield: Head & residue
 - Fresh weight
 - % dry weight
- Estimate Nitrogen Uptake

2014 Grower Survey

- 9 fields summer cabbage
- Soil sample at harvest
 - Available NO₃-N

2016 On-farm Small-Plot Trial

- 3 rates of total applied nitrogen:
 - 100 lb/A
 - 150 lb/A
 - 200 lb/A
- 2 application timings ratio at plant: side-dress
 - 100%: 0%
 - 50%: 50%
- Nitrogen Stabilizer (a.i. nitrapyrin)
 - None
 - At planting (surface spray followed by incorporation with fry fertilizer)
 - Side-dress (applied with 30-0-0, knifed in as a liquid)

2016 On-farm Small-Plot Trial

Nitrapyrin

- Instinct II (Dow AgroSciences) @ 37 fl oz/A
- Nitrification inhibitor
- Bactericide of nitrosomonas bacteria (convert ammonium (NH_4^+) into nitrite (NO_2^-)

Nitrogen Cycle

Small-Plot Trial, 5 reps

cv. Constellation (storage cabbage), planted Jun-10 Plot size: 7.5 ft x 19 ft; 3 rows – harvested inside heads of inside row

Side-dress Nitrogen

Nitrogen source: 30-0-0 liquid Applied by hand on Jul-10, 5 weeks post-transplanting

Results

The most important factor affecting yield was...

Rate of applied nitrogen!

Effect of <u>Total Applied Nitrogen</u> on Yield (Ton/A) -2014 Trial

Application timings pooled across applied nitrogen rate

Clubroot Assessment

2014 Trial - Effect of Total Applied Nitrogen on Club Root (Severity Rating)

Application rates pooled across applied nitrogen timings

Rate of Applied Nitrogen (lb/A)

Clubroot Severity: Scale 0-3

None = 0

Minor = 1

Moderate = 2 Severe = 3

No club root All healthy roots

Club root starting, mostly healthy roots

A lot of club root Some functioning roots

Virtually no functioning roots

Effect of <u>Total Applied Nitrogen</u> on Yield (Ton/A) -2014 Trial

Application timings pooled across applied nitrogen rate

Effect of Total Applied Nitrogen on Yield (Ton/A) -2016 Trial

Application Timings Pooled Across Total Rate of Nitrogen Applied

2014 Results: Effect of Total Applied Nitrogen

- According to these results, we did not yet hit the ceiling with respect to the response of applied nitrogen on yield
 - > 262 lb/A in 2014 with club root
 - > 200 lb/A in a hot dry year
 - In a Canadian study, maximum yield reached at <u>566 lb/A</u> N
- Significant interaction occurred between applied N rate and application timing for:
 - Head size (lb) = ton/A
- This means that head size responds differently to total N rate applied depending on the application timing

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

100% of total Nitrogen applied at planting

cv. Constellation

Ratio of Total Rate Applied At planting: side-dress

100:0

P=0.0239

Rate of Total Applied Nitrogen (lb/A)

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

50% of total Nitrogen applied at planting; 50% side-dress

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

25% of total Nitrogen applied at planting; 75% side-dress

cv. Constellation

Ratio of Total Rate Applied At planting: side-dress

---25:75

P=0.0001

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

2014 Trial: Effect of <u>Nitrogen Timing</u> on Head Weight (lb)

100% of total Nitrogen applied at planting

cv. Constellation

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

50% of total Nitrogen applied at planting; 50% side-dress

cv. Constellation

2014 Trial: Effect of Nitrogen Timing on Head Weight (lb)

25% of total Nitrogen applied at planting; 75% side-dress

cv. Constellation

2016 Trial: Effect of Nitrogen Timing on Yield (Ton/A)

Total Rate of Applied Nitrogen (lb/A)

2016 Trial: Effect of Nitrogen Timing on Yield (Ton/A)

- Applying nitrogen in split applications resulted in more efficient use of nitrogen than 100% at planting
- Opportunity to reduce total nitrogen rates

Nitrogen Use in Cabbage

Fraction of days from planting to harvest

2016 Trial: Effect of Nitrogen Stabilizer on Yield

2016 Trial - Yield (ton/A): Aug-30 to Sep-9 (~92 DAP)

Estimated Total Yield (ton/A): 92 DAP (Aug-30 & Sep-9)

★ Not significantly different than highest yielding treatment

Rate of Total Nitrogen Applied

cv. Bronco

7 50:50 none

50:50 Stabilizer

■ 100:0 none

100:0 stabilizer

Hoepting 2016

2016 Trial - Yield (ton/A): Aug-30 to Sep-9 (~92 DAP)

Estimated Total Yield (ton/A): 92 DAP (Aug-30 & Sep-9)

Rate of Total Nitrogen Applied

2016 Trial – Effect of Nitrogen Stabilizer on Yield (ton/A)

Estimated Total Yield (ton/A): 92 DAP (Aug-30 & Sep-9)

★Paired comparison is significantly different

Rate of Total Nitrogen Applied

cv. Bronco

7. 50:50 none

■ 100:0 none

■ 100:0 stabilizer

Hoepting 2016

Total Available N (NO₃-N + NH₄-N): Pre-Side-Dress & Early Cupping

Strong correlation:

- Head weight
- Pre-side-dress NO_3 -N (Pearson: R = 0.7515; p = 0.0196)

No correlation:

- Pre-side-dress NO₃-N
- Amount N applied
- Cupping NO₃-N
- Yield
 - → 50:50 none
 - **--** 50:50 N stabilizer (side-dress)
 - → 100:0 none
 - **─** 100:0 N stabilizer (at planting)

Total Available N (NO₃-N + NH₄-N): Pre-Side-Dress (35 DAT: Jul-12)

Total Available Nitrogen (NO₃-N + NH₄-N) at <u>Pre-Side-Dress</u> (Jul-12: 35 DAP)

✓ 50:50 none

50:50 Stabilizer

■ 100:0 none

■ 100:0 stabilizer

Total Available N (NO₃-N + NH₄-N): Pre-Side-Dress (35 DAT: Jul-12)

Total Available Nitrogen (NO₃-N + NH₄-N) at <u>Pre-Side-Dress</u> (Jul-12: 35 DAP)

cv. Bronco

1 50:50 none

50:50 Stabilizer

■ 100:0 none

■ 100:0 stabilizer

Hoepting 2016

Total Available N (NO_3 -N + NH_4 -N): Early Cupping (61 DAP: Aug-3 & 9)

Total Available Nitrogen in Soil (NO₃-N + NH₄-N) at Early Cupping (Aug-3 & 9: 61 DAP)

Rate of Total Nitrogen Applied

At Side-dress

At planting

Total Available N (NO₃-N + NH₄-N): Early Cupping (61 DAP: Aug-3 & 9)

Total Available Nitrogen in Soil (NO₃-N + NH₄-N) at Early Cupping (Aug-3 & 9: 61 DAP)

Rate of Total Nitrogen Applied

At Side-dress

At planting ■ 100:0 stabilizer

Total Available N (NO₃-N + NH₄-N): Early Cupping (61 DAP: Aug-3 & 9)

Total Available Nitrogen in Soil (NO₃-N + NH₄-N) at Early Cupping (Aug-3 & 9: 61 DAP)

√ 50:50 none

At Side-dress

■ 100:0 none

At planting

Total Available N (NO₃-N + NH₄-N): Harvest (92/100 DAP: Aug-30 & Sep-9)

Available Total Nitrogen in Soil (NO₃-N + NH₄-N): 92/100 DAP (Aug-30 & Sep-9)

Available NO₃-N Left in Soil at Harvest

Lb/A	Average	Minimum	Maximum
2014 Nitrogen Trial (33-262 lb/A N) Storage cabbage	7.5	1.8	29.0
2014 Grower Survey Summer Cabbage	9.0	2.1	43.3
2015 4-Field Case Study 3 Summer; 1 storage cabbage	8.0	0.0	30
2016 Nitrogen Stabilizer Trial (50-200 lb/A N) Summer cabbage	8.0	0	32
Salinas Valley, CA study (30 broccoli, cabbage & cauliflower fields)	10 (NO ₃ -N + NH ₄ -N)		
Canada study (0-446 lb/A N) c.v. Bartolo	8-10 (0-267 lb/A N)		26.7 (267-446 lb/A)

Available NO₃-N Left in Soil at Harvest

$< 10 lb/A NO_3-N is low:$

- Low risk for leaching and environmental contamination
- Causing winter wheat to lodge
- Cabbage has a high capacity to scavenge nutrients
- Highest correlation in 2016 study was between:
 - Head weight
 - Nitrogen Uptake

Nitrogen Uptake in Cabbage: Head & Leaf Residue (2016)

Nitrogen Use: Amount of Nitrogen (lb/A) Used by Cabbage

cv. Bronco

Rate Of Total Applied Nitrogen (lb/A)

Hoepting 2016

Nitrogen Uptake in Cabbage

Lb/A Nitrogen	Head (Harvested)	Stump & Leaves (Left in Field)	Total N Use
2015 4-Field Case Study 2 Summer; 1 storage cabbage	101 (=48%)	109	210
2016 Nitrogen Stabilizer Trial (100-200 lb/A N) Summer cabbage	96.5 (=48%) (56-143)	103 (78-143)	200 (168-226)

Cabbage Leaves Behind ~100 lb of Nitrogen in Crop Residue

- Amount of nitrogen left behind in cabbage field in leaf and stump residue is ~ 100 lb/A
- 80 to 120 lb/A of nitrogen for winter wheat.
- Once crop takes up 150 lb/A it is prone to lodging.
- Results suggest that the nitrogen left behind in cabbage leaf & stump residue will mineralize and certainly may be a contributing factor to lodging of winter wheat
- Or, may leach into ground water
- Plan on reducing rate of applied nitrogen when winter wheat (or other crop) follows summer cabbage
 - On-farm experimentation (e.g. strip trials)
- How to capture 100 lb/A N following storage cabbage?

Nitrogen Uptake in Cabbage: Head & Leaf Residue

Nitrogen Use: Amount of Nitrogen (lb/A) Used by Cabbage

cv. Bronco

Rate Of Total Applied Nitrogen (lb/A)

Hoepting 2016

Where Else Does Cabbage Get Nitrogen From?

- Organic matter
 - 10-20 lb/A per 1% OM
 - 20 lb/A for healthy soils; 10 lb/A for poor quality
 - 2016 Study had 2.9% OM = <u>58 lb/A</u>
 - At most 150 and 200 lb/A of total applied nitrogen treatments, this would close the gap
- Breakdown of residue from previous crop
 - E.g. corn stubble
- Previous nitrogen-fixing legume crop
- Can rate of nitrogen be predicted?
 - Soil test to measure OM
 - Nitrogen credits from manure and legumes
 - PSNT test to determine nitrogen?

Nitrogen Use in Cabbage

Fraction of days from planting to harvest

Can Nitrogen Application Be Predicted?

Calculations based on 2016 trial results

Total Cabbage Uptake	~214 lb/A
Minus nitrogen in soil (58 lb/A)	156 lb/A
Minus nitrogen already taken up by crop (23 lb/A)	133 lb/A
Example: 100 lb/A N applied at planting: Minus PSNT test (64.6 lb/A)	Add 68 lb/A (169 total)
Example: 100 lb/A N applied at planting: Minus PSNT test (108 lb/A)	Add 25 lb/A (126 total)
Example: 50 lb/A N applied at planting: Minus PSNT test (70.4 lb/A)	Add 63 lb/A (114 total)
Example: 75 lb/A N applied at planting: Minus PSNT test (80.5 lb/A)	Add 55 lb/A (129 total)

Using %OM and pre-side dress test to predict amount of nitrogen to apply at side-dress with varying rates of N applied at planting resulted in 114 to 169 lb/A of total nitrogen used.

PSNT Soil Test for Fall Cabbage: Northeast U.S.

Heckman et al. 2002

2 weeks POST-transplanting:

If PSNT: < 9 ppm (= 18 lb/A)
Apply 90-160 lb/A N
=100% standard rates

If PSNT: 10 - 16 ppm (= 20- 32 lb/A)
Apply 40-120 lb/A N
(standard rates reduced by 25-50%)

If PSNT: ≥ 24 ppm (= 48 lb/A)
No response to applied N

Summary

- Most important factor driving cabbage yield is amount of applied nitrogen
- When 100% nitrogen applied at planting, highest rates gave highest yields and climbing
 - 2014 trial: 262 lb/A
 - 2016 trial: 200 lb/A
- Rate of increase in yield per 50 lb/A N:
 - Normal year (2014): 2.3 ton/A
 - Dry year (2016): <u>0.6 ton/A</u>

Summary

Split applications of nitrogen between planting resulted in more efficient nitrogen use

- Maximum yields achieved at:
 - 2014 50:50 **197 lb/A N**
 - 2014 25:75 **132 lb/A N**
 - 2016 50:50 **150 lb/A N**
- Nitrogen stabilizer (nitripyran) significantly decreased yield by <u>8.5%</u> in a hot dry year
 - Reduced availability of soil nitrogen
 - Demonstrating that it worked!
 - Especially when applied at planting as a surface spray and then incorporated; compared to no stabilizer:
 - 4 17% reduced NO₃-N + NH₄-N at side-dress
 - 39-77% reduced NO₃-N + NH₄-N at early cupping
 - How would it perform in a normal or wet year?

Summary

- Cabbage is a very effective scavenger of nitrogen from soil
 - Typically uptake exceeds amount applied
 - <10 lb/A of available nitrogen remains in the ground at harvest
- ~ 100 lb/A of nitrogen is left in the field in crop residue after harvest
- Experiment with reduced rates of nitrogen in crops following harvest of summer cabbage (such as winter wheat)
- Expect a healthy cabbage crop to use ~215 lb/A of nitrogen

Recommendations

- 150 lb/A total applied nitrogen
 - Cornell guidelines are too low
- Split applications:
 - Maximum 50% at planting
 - 50 75 lb/A pre-plant & at planting
 - 75 100 lb/A at side-dressing
 - Adjust rate according to PSNT, %OM and field history
- Consider a nitrogen stabilizer at planting in a wet spring?

Questions?

