# Understandling the Physiological and Blochemical Mechanlsms of Graftincompactibility 

Stefano Musacchi, Associate Professor
Endowed Chair of Tree Fruit Physiology and Management WSU Tree Fruit Research and Extension Center, Wenatchee, WA

Why is graft-incompatibility between pear and quince a major problem in Italy?

94\% of orchards in Italy are grafted on quince

Why do growers still use quince, despite graft-incompatibility?

- Dwarfing (HDP and UHDP)
- Early bearing
- Easy to propagate


## Pear cultivars classification on the basis of graft-incompatibility level with quince

## Compatible

Beurré Hardy
Doyenne du Comice Generale Leclerc Passe Crassane

Intermediate

Abbé Fetel
Conference
Bartlett (william)
Packham's Triumph Max Red Bartlett


Graft histogenesis

$\checkmark$ Initial phases of graft are the same in compatible or combinations, because they are a reaction to the wound.
$\checkmark$ A good vascular tissue formation occurs only in the compatible
combinations.

## Graft Incompatibility

Scaramuzzi (1955): inability of some grafted plants to function as a single and unique plant.
Moore and Walker (1981): physiological incompatibility between tissues of the two members that leads to the failure of the graft.

Feucht (1988): phenomenon of premature tree senescence caused by physiological and biochemical dysfunctions.

## Classification of

## graft-incompatibility:

- Translocated
- Delayed
- Localized


## Translocated graft-incompatibility

- The agent factor is a substance transported from one graft member to the other as a toxin.
- The use of interstock graft can not overcame the incompatibility.
- Example: peach cv "Hale's Early" grafted on "Myrobolan B" plum roots (weak union and distorted tissues).


## Delayed graft-incompatibility

- After several years of growth, symptoms appear.
- This incompatibility is frequently due to the presence of disease, i.e. virus, phytoplasma, introduced by grafting.
- Incompatibility becomes evident when some mechanical stresses occur.



## Quick decline

## Abbé Fétel/ BA29 -Phytoplasma symptoms



## Localized graft-incompatibility

- Physical contact between the two bionts are required.
- Other specific symptoms are necrosis vascular discontinuity, starch accumulation, break of the graft-union.
- Use of mutually compatible interstock overcomes the problem.
- An example: Beurré Bosc (Kaiser) grafted on quince $\rightarrow$ Beurré Hardy as interstock.


## EXAMPLE OF PEAR-QUINCE

## GRAFT-INCOMPATIBILITY

## Bartlett

Necrosis enlargement


## Starch accumulation



## Graft-incompatibility



## Gur's model of graft-incompatibility

 between pear and quince
## KAISER T9 VF SH

Pear

Quince
HCN + Benzoic Aldehyde

ß-glucosidase
Mandelonitrile lyase

Gur et al., 1968

In enzymology, a prunasin beta-glucosidase (EC 3.2.1.118) is an enzyme that catalyzes the chemical reaction:

(R)-prunasin $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2$ D-glucose + mandelonitrile

The mandelonitrile lyase (EC 4.1.2.10) is an enzyme that catalyzes the chemical reaction:

Mandelonitrile $\rightleftharpoons$ cyanide + benzaldehyde


## Objections to the Gur's model:

- Cyanogenic glycosides are accumulated and compartmentalised in cell vacuoles and are used as nitrogen reserve.
- There was no evidence of prunasin transportation from quince to pear.
- There was no presence of prunasin in callus.
- Cyanogenic glycosides are not present in pear.
- B-glucosidase and Mandelonitrile lyase are present also in the quince (detox system?)


## Phenol involvement in Graft Incompatibility

Treutter and Feucht (1988) found an accumulation of prunin (flavanon) above the graft union in incompatible combinations of Prunus avium and Prunus cerasus, probably due to histo-anatomical disorders (e.g. changed cellular differentiation).


## Phenol accumulation \& graft-incompatibility

The different composition in polyphenols is known to interfere with the plasmalemma by changing the structure and the orientation of cell-wall microtubules and a corresponding modification of wall cell permeability.

## Phenols in graft-incompatibility

- In graft incompatibility, the phenols may be exported from the vacuoles to the cytoplasmic matrix where they are oxidated by $P P O$ and $P O D$ to quinones. The quinones polymerise
 and became toxic (Feucht and Treutter 1989).
- Moreover, they may form irreversible linkages with proteins or other macromolecules and precipitate with necrosis formation (Feucht and Treutter 1989).

Polyphenols found in the phloem of the different genotypes

| Compound | Genotype |
| :--- | :--- |
| naringenina | William e Franco |
| +catechina | William, Franco e <br> EMC |
| -epicatechina | William, Franco e <br> EMC |
| quercitrina | William e Franco |
| isoquercitrina | EMC |
| procianidina B1 | William |
| procianidina B2 | EMC |

## Polyphenol in the phloem

Combinations
incompatible
compatible

| Combinations | Oligomeric <br> fraction (\%) |
| :--- | :---: |
| William autoradicato | 0.78 |
| Franco | 0.95 |
| Cotogno EMC | 1.21 |
| W/EMC 2 cm above | 1.8 |
| W/EMC Grating point | 2.9 |
| W/EMC 2 cm below | 1.4 |
| W/Franco 2 cm above | 0.9 |
| W/Franco ${ }^{\text {Grating point }}$ | 1.4 |
| W/Franco 2 cm below | 1.1 |

## PEAR-SEEDLING COMBINATION: (-)-EPICATECHIN (mg/100g FW)


$108 \mathrm{mg}_{\text {above }}^{2} \mathrm{~cm}$ WILLIAM


## SEEDLING

2 cm below

# PEAR-QUINCE COMBINATION: (-)-EPICATECHIN (mg/100g FW) 



## Phenols in pear-quince combinations

- Polyphenols accumulation at the graft point in incompatible combinations with quince was mainly due to (-)-epicatechin.
- This flavan-3-ol increased its concentration at the graft union compared with 2 cm above graft according to graft incompatibility levels with quince:

Beurré Hardy (+56\%) $\Rightarrow$ compatible
Bartlett (+172\%) $\Rightarrow$ intermediate
Beurré Bosc (+353\%) $\Rightarrow$ incompatible

## Cell-cell recognition

Little information is available about cellcell recognition, and none of the several theories posited to date has established the existence of a recognition protein
between the cells of the two genotypes in
the graft union tissues.

## Yeoman and Brown (1976)

Proposed a model based on the formation of a cell-cell recognition protein complex for the scion-stock combination: its absence is supposed to demonstrate an incompatible graft.

## Moore (1981-1984)

Using "in vitro" callus models, he showed that contact is not necessary for the onset of graft incompatibility.

## How to study graft-incompatibility?

- In vivo (polyphenols role)
- In vitro (new models to simplify the system and reduce interactions with the environment)

Models for studying biochemical and physiological aspects of graft-incompatibility

a) Micrografting in vitro

b) Graft of in vitro shoot on acclimating plants

c) Co-culture of callus in the same Petri dishes

d) Co-culture of cell suspensions

## A) In vitro Micrografts




Tissue printing to determine presence of enzyme (beta glucosidase)

Tissue printing to determine presence of beta glucosidase

## In vitro micrografts



Bosc/Bosc Bosc/MC BH/BH BH/MC


Espen et al., 2002 and 2005

The In Situ Cell Death Detection Kit [Roche Diagnostics, Gmbh] has been designed as a precise, fast, and simple non radioactive technique to detect and quantify apoptotic cell death at the single-cell level in tissues; based on the TUNEL method (TdT-mediated dUTP terminal nick-end labeling to detect PCD-characteristic DNA fragmentation) During apoptosis, DNAse activity not only generates double-stranded, low-molecularweight DNA fragments (monoand oligonucleosomes), but also introduces strand breaks ("nicks") into the high-molecular-weight DNA.
These processes can be identified by labeling the free 3'OH termini with terminal transferase (TdT), which attaches labeled nucleotides to all $3^{\prime} \mathrm{OH}$-ends (TUNEL reaction; TdT-mediated dUTP nick end labeling).
Labeling with fluorescein may also be followed by immunohistochemical detection using anti-fluorescein-specific antibodies that are conjugated to POD or AP.

DNA Fragmentation - TUNEL In Situ Cell Death Detection Kit - Test Principle


## In situ TUNEL assay:

TdT-mediated dUTP terminal nick-end labeling to detect PCD-characteristic DNA fragmentation


10 DAG
Bosc/Bosc: compatible


## In situ TUNEL assay



10 DAG


## b) Graft of in vitro shoot on acclimating plants

## Grafting phases


A) Rootstock preparation.

C) Grafted plant

B) In vitro shoot.

D) Protection to avoid shoot drougth.


Cambium


BH/OHF after 30 days
Starch

## K/OHF after 30 days



K/MC after 30 days

## c) Co-culture of callus in the same Petri dishes

Example 1

Bartlett


Quince BA29

Musacchi et al., 1996 CONTROL (NEVER MERGED) AND AFTER 5 DAYS OF MERGING


## c) Co-culture of callus in the same Petri dishes

## Example 2

Cell-to-cell transport through plasmodesmata in tree callus cultures
ANA PINA, ${ }^{1,2}$ PILAR ERREA, ${ }^{1}$ ALEXANDER SCHULZ ${ }^{2}$ and HELLE J. MARTENS ${ }^{2,3}$


Starting point:

- for a successful grafting, the establishment of symplastic contacts in graft interface facilitates compounds transfer between 2 bionts.
- Plasmodesmata mediate the cell-to-cell communication route in the plant kingdom

Hypothesis:

- Localized incompatibility (in some Prunus grafts) could be related to insufficient plasmodesmata coupling at an early stage of development within one of the partners. Idea to be verified through bioimaging methods.

Material:
MO callus= apricot cv. Moniqui
MN callus= plum rootstock Marianna 2624
$\mathrm{MO} / \mathrm{MO}$ and $\mathrm{MN} / \mathrm{MN} \rightarrow$ compatible homografts
MO/MN $\rightarrow$ incompatible heterograft


Callus heterograft

Techniques combined with confocal microscopy:


To track the diffusion of released fluorescein via plasmodesmata


Bleach



To quantitatively measure the movements of fluorescently tagged molecules or structure within live cells after photobleaching



## d) co-culture of cell suspensions




Dark, $\sim 22^{\circ} \mathrm{C}$ for 14 days at 78 rpm

## e) co-culture of callus floating in cell suspension

A "Magenta" and a raft with a low proteinabsorption membrane (Durapore, $5 \mu \mathrm{~m}$ pore size, Millipore)

The graft union is simulated by placing the callus over the membrane and the cellsuspension cultures under it, so that the raft, kept in motion by a mechanical stirrer, floats.



Magenta lid with rubber septum

## Cultivar callus growth



BH
BOSC

## Callus growth after one week of co-culture



## Respiration rate



## GAS ANALYSIS

- $\mathrm{CO}_{2}$


## - Ethylene



## Bosc - increase of callus weight (g)



Graft Combinations

Increase of ethylene in the different combinations


Graft combinations

## $\mathrm{CO}_{2}$ increase in different combinations



## RNA ANALYSES:

## mRNA DIFFERENTIAL DISPLAY

## allows direct isolation and cloning of cDNA fragments corresponding to mRNAs differently expressed in the compatible and incompatible combinations (Pirovano ot al, 2002)

- RNA extraction
- Reverse transcription with $3^{\prime}$-anchored primer ( $\mathrm{T}_{12} \mathrm{AC}$ )
- PCR amplification with 3'-anchored primer and random decamer
- Separation on acrylamide gels and identification of DD-fragments
- DNA extraction from excised bands of interest
- Re-amplification by PCR with same conditions
- Separation on agarose gels
- Excision of amplified products and cloning and sequencing



B/B B/E B/F B/B B/E B/F
Primers:
$\mathrm{T}_{12} \mathrm{AC} ; \mathrm{T}_{12} \mathrm{CA} ; \mathrm{T}_{12} A A ; \mathrm{T}_{12} G A ; \mathrm{T}_{12} A G ; \mathrm{T}_{12} \mathrm{CG}$
GTGGCCGATG AGCAGCGAGG CCTGGGTCAG GTCGGTTGTC


## Sequencing cDNAs <br> 

Homology research in GenBank and EMBL databases

| Clone | Tag size (pb) | Putative identity | Associated sequence | \% identity, expect value | Northern analysis |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T12CA-7 | 292 | NT3 | Nicotiana tabacum | $\begin{aligned} & 39 \% \\ & 5 \mathrm{e}-10 \end{aligned}$ | - - |
| T12CA-10 | 138 | Pathogenesis related protein I (SaPRI) | Santalum album | $\begin{aligned} & 100 \% \\ & 4 \mathrm{e}-53 \end{aligned}$ |  |
| T12AG-14 | 261 | Unknown protein | Arabidopris thaliana | $\begin{aligned} & 60 \% \\ & 9 \mathrm{e}-15 \end{aligned}$ |  |
| T12AG-7 | 215 | Import intermediate associated protein (chloroplast) | Pisum sativum | $\begin{aligned} & 86 \% \\ & 3 \mathrm{e}-24 \\ & \hline \end{aligned}$ |  |
| T12AG-10 | 195 | Extracellular dermal glycoprotein (EDGP) | Daucus carota | $\begin{array}{\|l\|} \hline 89 \% \\ 16-13 \end{array}$ | - |
| T12AG-14 | 383 | Putative protein translation factor SUIl homolog (eIF-2A) | Arabidopsis thaliana | $\begin{aligned} & 92 \% \\ & 8 \mathrm{e}-15 \end{aligned}$ |  |
| T12CG-7 | 302 | NADH dehydrogenase (ubiquinone) subunit 1 | A. Thaliana | $\begin{array}{\|l} \hline 94 \% \\ 2 \mathrm{e}-20 \\ \hline \end{array}$ |  |
| T12CG-11 | 192 | Platelet/endothelial cell adhesion molecule | Homo sapiens | $\begin{aligned} & 61 \% \\ & 5 \mathrm{e}-3 \end{aligned}$ |  |
| T12AA-14 | 113 | No significant similarity |  |  |  |

Pirovano et al. 2002

## PROTEINS ANALYSES

- Enzyme activity (SOD and CAT)
- SDS-PAGE (sodium dodecyl sulfate polyacylamide gel electrophoresis)
- 2D-PAGE (Two-dimensional gel electrophoresis)


## SOD and CAT activities in cherry co-culture




Quince MC: densitometric analysis of proteins extracted from the liquid medium of cell suspension alone and in co-culture


## Quince MC: densitometric analysis of proteins extracted from the liquid medium of cell suspension



STD



Cv Beurré Bosc: Densitometric analysis of proteins extracted from the callus above the porous membrane


Cv. Beurré Hardy: densitometric analysis of proteins 0.6 extracted from the callus above the porous membrane

$0.5 \quad$| $B H / B H$ |
| :---: |
| $B H / F o x 11$ |
| $B H / M C$ |

STD


## 2D-PAGE



## Starting matherial

## Protein expression by 2D electrophoresis


only in B/B
only in $\mathrm{B} / \mathrm{MC}$ decrease in $\mathrm{B} / \mathrm{MC}$ increase in BMC only in B/MC and BH/Fox11

# Gel <br> <br> comparison <br> <br> comparison between pear combinations 

$n^{\circ}$ spots: 802 matches: 476
\% matches: 63\%

The incompatible combination exhibits the gel with the higher \% matches: $65 \%$ spots number


## Starting from Pirovano et al. (2002) we tried to identify the following proteins in a databank.

| Protein | Species | Homology <br> level | Expression <br> level |
| :---: | :---: | :---: | :---: |
| NT3 | Nicotiana tabacum | $39 \%$ | --- |
| Patogenesis Related Protein I (SaPRI) | Santalum album | $100 \%$ | - |
| Import intermediate associated protein | Pisum sativum | $86 \%$ | - |
| Extracellular dermal glycoprotein (EDGP) | Daucus carota | $89 \%$ | - |
| Protein translation factor SUI1 homolog <br> (eIF-2A) | Arabidopsis thaliana | $92 \%$ | - |
| NADH dehydrogenase Subunit I | Arabidopsis thaliana | $94 \%$ | - |
| Platelet endothelial cell adhesion molecule | Homo sapiens | $61 \%$ | $-\infty-$ |
|  |  |  | K |


| Protein name | Accession number | Entry name | Molecular weight (KDa) | Theoretical pl |
| :---: | :---: | :---: | :---: | :---: |
| NT3 | Q9XEY9 | Q9XEY9_TOBAC | 70.78 | - |
| hrgpNT3 | P13983 | EXTN_TOBAC | 65.41 | 10.00 |
| Pathogenesis <br> Related Protein I <br> (SaPRI) | O22479 | O22479_9MAGN | 15.31 | - |
| Import intermediate associated protein | Q43715 | TOC75_PEA | 88.27 | 7.00 |
| Extracellular dermal glyeoprotein (EDGP) | Q39688 | EPIG_DAUCA | 43.55 | 797 |
| Protein translation factor SUII homolog (eIF-2A) | Q9FE78 | Q9FE78_ARATH | 38.80 | 5.00 |
| Protein translation factor SUll homolog (eIF-2A) (subunity B) | Q41969 | IF2B_ARATH | $30.07$ | $6.79$ |
| Putative NADH dehydrogenase Subunit I | Q9M9M9 | N7BM_ARATH | 18.31 | $9.26$ |
| NADH dehydrogenase Subunit I (75 Kda subunity) | Q9FGI6 | NUAM ARATH | $81.50$ | $6.24$ |
| NADH <br> dehydrogenase <br> Subunit I ( 18 Kda subunity) | Q9FLX7 | NUFM_ARATH | $19.18$ | $4.73$ |
| Platelet endothelial cell adhesion molecule | P1 6284 | PECAI_HUMAN | $82.53$ | $6.55$ |




Import intermediate associated protein

$\frac{K}{K} \frac{K}{M C} \frac{K}{A 28}$

Putative NADH dehydrogenase




Subunit $\beta$ of IF-2A


K K K
K MC A28


## Gel analysis

## KAISER/KAISER

Details
$\mathrm{K} / \mathrm{O}$

Gel
comparison between cherry combinations


- The compatible combination exhibits the gel with the highest number of spots.
$n^{\circ} \mathrm{spc}$
- The combination with the highest level of homology is the self-graft.
match
\% ma
- The values of percent matches decrease with the increase of the graft-incompatibility level.




## CONCLUSIONS

- The "in vitro" model provides a lot of information about relationship between genotypes and cell-cell recognition
- Beurré Bosc showed a higher growth compared to Beurré Hardy
- Callus respiration of Bosc seems to be higher in presence of incompatible rootstock quince $\mathbf{C}$.
- Proteins changes can be associated with cell-cell recognition mechanism.
- Identification of proteins as 'messengers' of biological cellcell recognition between the two genotypes in incompatible graft combination would provide an early screening "marker".


## Conclusions

- Gene expression is affected by callus co-culture combination
- The effect on gene expression does not require direct tissue contact: is a mobile solute involved?
- Some differentially expressed cDNAs match with nucleotide sequences coding for proteins involved in: cell adhesion ( $\mathrm{T}_{12}$ CG11), senescence and/or programmed cell death ( $\mathrm{T}_{12} \mathrm{CA}-10 ; \mathrm{T}_{12} \mathrm{AG}-14$ ), wounding response ( $\mathrm{T}_{12} \mathrm{AG}-10$ ) and tracheary element differentiation ( $\mathrm{T}_{12} \mathrm{CG}-7$ ).


## Acknowledgements

Sara Serra - Washington State University
Vincenzo Ancarani - University of Bologna
Andrea Masia - University of Bologna
Gian Attilio Sacchi - University of Milan
Luca Espen - University of Milan
Fabio Nocito - University of Milan
Andrea Fabbri - University of Parma

## THANK YOU FOR YOUR ATIENTION

