

Effect of Rate and Rotation on Fungicide Resistance in Stemphylium Leaf Blight

Katrin Ayer¹, Christy Hoepting², Kerik Cox¹

¹Dept. of Plant Pathology, Cornell AgriTech ² CCE Cornell Vegetable Program

Onion SLB Fungicide Resistance Workshop Syracuse, NY: January 15th 2020

New York State Agricultural Experiment Station

Phases of Resistance Development

- 1. Emergence*
- 2. Selection
- 3. Establishment
- *Fungicides are not inherently mutagenic, mutations are pre-existing
- *Advantageous mutations occur infrequently

Pathogen Population

- Sensitive Isolate
- Resistant Isolate

Application of a fungicide does not cause emergence, rather will select for further establishment

(adapted from van den Bosch et al 2011)

Fu	ngicide Applications-Appli	cation Rate
	Treatment	Application Frequency
	Untreated	0
	Luna Tranquility 8 fl oz	4
	Luna Tranquility 12 fl oz	4
Э	Luna Tranquility 16 fl oz	4
Elba	Merivon 5.5 fl oz	4
	Merivon 9 fl oz	4
	Tilt 4 fl oz	4
	Tilt 8 fl oz	4
	Untreated	0
/ne	Luna Tranquility 8 fl oz	5
Wayne	Luna Tranquility 12 fl oz	5
	Luna Tranquility 16 fl oz	5

Fungicide Applications-Application Rotation

Spray	Spray Intervals/Frequency				Spray Intervals/Frequency			
-	-	-	-	-	-	-	-	
X	-	X	-	Х	-	X	-	
-	X	-	X	-	X	-	Х	
Х	X	-		Х	Х	-	-	
-	-	X	X	-	-	X	Х	
	- X - X	X - X X X	X - X - X X X -	X X X X X X	X - X - X - X - X - X - X		X X - X - X - X - X - X - X - X - X - X - X	

Collect Here (4 Applications)

Collect Here (8 Applications)

Fungicide Applications-Application Number

Untreated Maintained 0 Luna Tranquility 16 fl oz 6	plication lumber
Luna Tranquility 16 fl oz 6	0
	6
Luna Tranquility 16 fl oz 9	9

Case Study: Apple Scab

Correlation between incidence and relative growth

- Exceptionally weak, but significant correlation
- Potential explanation:
 The larger the pathogen population, the greater the chance of resistance development
- Manage population size to manage fungicide resistance

Conclusions

- More questions than answers...
- Mixing modes of action (when both FRAC groups still effective) will be best at slowing down selection for resistance

Smaller trends:

- Low rate seems to be selecting for more reduced sensitivity isolates
- Increased exposure to fungicides results in shifts towards reductions in sensitivity
- Understanding trends seen in apple scab resistance may give insight towards understanding Stemphylium resistance
- Lot of unanswered questions still and a lot more to be learned...

Acknowledgements

Collaborators

- Christy Hoepting
- Kerik Cox
- Frank Hay

Funding Sources

- Bayer Crop Science
- BASF
- Syngenta

Questions?

kma86@cornell.edu

