Managing light, temperature, and humidity in the greenhouse

College of Agriculture and Life Sciences

Outline

- Temperature
- Heat loss and saving heat
- Cooling
- Humidity
- Light

Average Daily Temperature (ADT) Affects:

- Crop timing
- Flower size
- Leaf size
- Root growth
- Time to flower
- Time to unfold a leaf

Cold Sensitive Crops

- African violet
- Alocasia
- Angelonia
- Banana
- Begonia (fibrous)
- Blue salvia
- Caladium
- Canna
- Celosia
- Coleus

- Hibiscus
- New Guinea impatiens
- Peppers
- Phalaenopsis orchid
- Poinsettia
- Portulaca
- Purple fountain grass
- Tomato
- Torenia
- •Vinca (Catharanthus)

Cold Tolerant Crops

- Ageratum
- Alyssum
- Broccoli
- Campanula
- Cineraria
- Cyclamen
- Easter lily
- Gaillardia
- Lettuce
- Leucanthemum
- Marigold (French)

- Miltoniopsis orchids
- Nemesia
- Osteospermum
- Pansy
- Petunia
- Rudbeckia
- Scabiosa

Measuring Air Temperature

- Sensor must be shaded
- Sensor must be aspirated
 - Air moved across
- Sensor should be at or near plant height in a representative greenhouse location (center)

Good

What's wrong?

Cornell**CALS**

Reducing heat loss

- In a poly house use an anti-condensation IR reflective material
- In double poly houses, this anti-condensation and IR reflective poly is the inner layer

Reducing heat loss

Consider double-layer glazing

- R-value (insulative value)
 - single poly: 0.9
 - Double poly: 1.6

Install a heat curtain

- Approximately 80% of heat is used at night
- Retractable curtains not only reduce heat loss but also increase plant temperature by reflecting IR
- Closed-weave curtains can reduce heat loss by 30 to 50% at night

Cornell CALS College of Agriculture and Life Sciences

Reducing heat loss

- Insulate curtain walls to 12" below the greenhouse floor and up to bench height.
- Add another layer of insulation to the north wall.

Reducing heat losses to infiltration

- Seal all the little holes around fans, pads, vents and doors.
- Patch leaks in poly

Conventional Fuel Sources cost comparison

Source	Price	Efficiency	Cost MBtu
Electricity	\$0.11 / kwh	100%	\$32.23
Propane	\$2.00 / gallon	75%	\$28.80
Natural Gas	\$1.00 / therm	75%	\$13.30
Fuel Oil	\$2.50 / gallon	75%	\$24.00

Cooling

Passive cooling

• Little to no energy

Vents

• Ex: Roll up walls and roof vents

Shade

Shading

- Spray on shade compound
- Curtains
 - Manual or retractable

Reduces incoming solar radiation

Cooling

Active Cooling

- Forced air ventilation
- Fan and pad (evaporative cooling pad)

College of Agriculture and Life Sciences

Forced Air Ventilation

Fan number and size

- 0.8 cfm per ft² greenhouse surface area
 - As rated at 0.1 inches of static water pressure
 - Spaced no more than 25 feet apart

Motorized louvers are better than gravity operated (prevented wind from blowing open when greenhouse heating)

Cornell CALS College of Agriculture and Life Sciences

Forced Air Ventilation

Cornelle Figure 4–3. Temperature rise in greenhouses as a function of air exchange rate. Solar intensity is 280 Btu/hr.-ft.² on a horizontal surface at solar noon. The greenhouse is full of actively growing crops.

Evaporative Cooling Pads

- Cooling below outdoor temperature is possible
- Degree of cooling depends on humidity (driving force for evaporation)
- 4" thick pad requires 0.5 gallon water per minute per linear ft.
- 6" thick pad requires 0.75 gallon water per minute per linear foot
- Algaecide often added to cooling pad water

CornellCALS College of Agriculture and Life Sciences

Relative Humidity

Too high

Cornell**CALS**

- Reduces plant transpiration
 - Decreasing nutrient uptake (esp. Ca) / photosynthesis
- Condensate droplets on ceiling
 - Water puddles/algae
 - Reflects light
- Condensation on leaf surfaces
 - Promotes foliar disease
- Edema (ivy geraniums, sweet potato vine, tomato)

Relative Humidity

Too low

- Plant stress
 - May transpire quicker than roots can take up water →wilting
 - Slower growth
- Plants especially sensitive during propagation/rooting
- Favors spider mites

Humidity control

- Grow dry
 - Avoid excess watering
 - Avoid watering before sunset
- Air circulation keeps humidity evenly distributed
- Heat plants (ex: bottom heat) keep their temperature above dew point
- Dehumidification
 - Vent / heat most common
 - Can cost 5-30% of greenhouse energy bill (average 20%)
 - Heat exchanger can recovery about 40% of lost heat
 - Mechanical dehumidifier
 - heat pump / refrigeration cooling cycling to condense air than reheat air
 - Not typically practical / cost effective in greenhouse

Venting / heating to control humidity

Venting at sundown and sunrise

- Venting/heating cycle should be be done two or three times per hour after sun goes down
 - May not be needed in middle of night if not supplemental lighting (or don't have wet floors)
 - Best would be to monitor with a humidity sensor
- Again in the morning at sunrise

https://ag.umass.edu/greenhouse-floriculture/fact-sheets/reducing-humidity-in-greenhouse

Horizontal Airflow Fans (HAF)

- Provide air circulation
- Increase the uniformity of the greenhouse environment
 - Reduces temperature and humidity gradients

Horizontal Airflow Fans (HAF)

- Minimum of two fans (1 pointing in each direction to mix air) in single span greenhouse
- Add a row of fans for each additional 50' of greenhouse length
- Total fan capacity in cubic feetper minute (cfm) should equal onefourth the house volume.
 - 16" dia. circulating fans with 1/15 hp motors will generally be sufficient.

Cornell**CALS**

College of Agriculture 👘 🕅 and Life Sciences Source: Aldrich and Bartok, 1994

Light

Naturally light availability

Winter has 4 times less light than summer!

Outdoor Daily Light Integral (DLI) Maps

What is your greenhouse's light transmittance? Typically 50-70%

Cornell**C**

How much light do you need?

Flower Crops

- Propagation of plugs and cuttings
 - 8-12 mol m⁻² d⁻¹ (after callus)
- Bedding plants
 - 10-12 mol m⁻² d⁻¹ (species dependent)
- Flowering potted plants
 - 10-12 mol m⁻² d⁻¹ (species dependent)
 - Phalaenopsis orchids (6), potted miniature roses (14)
- Install lighting capacity of 50–100 $\mu mol\ m^{-2}\ s^{-1}$

Light intensity effects time to flower

Pansy grown for 3 weeks under different lamps

How much light do you need?

Vegetables

- Within bounds: 1% more light \rightarrow 1% more yield
- Lettuce and Herbs
 - $12-17 \text{ mol } \text{m}^{-2} \text{ d}^{-1}$
 - For head lettuce
 - greater light \rightarrow tipburn
 - Vertical airflow fans important
- Microgreens
 - 12 mol m⁻² d⁻¹
- Install lighting capacity of 100–200+ μ mol m⁻² s⁻¹

How much light do you need?

Fruiting Crops

- Cucumber
 - 15 mol m⁻² d⁻¹ minimum, >30 mol m⁻² d⁻¹ optimum
- Tomato
 - 20 mol m⁻² d⁻¹ minimum, >30 mol m⁻² d⁻¹ optimum
- Sweet Pepper
 - 20 mol m⁻² d⁻¹ minimum, >30 mol m⁻² d⁻¹ optimum
- Strawberries
 - 17 mol m⁻² d⁻¹ minimum, >20 mol m⁻² d⁻¹ optimum
- Install lighting capacity of 100–200+ $\mu mol\ m^{-2}\ s^{-1}$

CornellCALS College of Agricultu and Life Sciences

Considerations when choosing new lights

- Wall-plug efficacy
- Initial cost (\$/fixture x # of fixtures)
- Lifespan (often reported to 70% output)
- Bulb replacement cost
- Installation cost
- Shading of fixture
- Uniformity of light plan
- Wavelength/Light quality?

Lamp type	PAR efficacy (µmol/J)	PAR efficacy (mol/kWh)
HPS (single ended)	1.56	5.62
HPS (double ended)	1.59	5.72
LED (bar)	2.39	8.60
HPS (claimed)	2.10	7.56
LED (bar, claimed)	3.00	10.8

Highest measured efficacies (so far)

A.J. Both Rutgers University

Questions?

Neil Mattson nsm47@cornell.edu

