Cornell Cooperative Extension Cornell Vegetable Program

Rotten Onions 101: Part I – What kind of rot you got?

- Lindsey du Toit, Dept. of Plant Pathology, WSU
- Brian Kvitko, Dept. of Plant Pathology, UGA
- Christy Hoepting, CCE Cornell Vegetable Program

Empire State Producer's Expo – Onion Bulb Rot Session

Virtual: January 14, 2021

Empire State Producers Expo Onion Bulb Rot Session Virtual: January 14, 2021

Stop the Rot

Combating onion bacterial diseases with pathogenomic tools and enhanced management strategies

https://alliumnet.com/projects/stop-the-rot/

USDA NIFA SCRI Project No. 2019-51181-30013

United States Department of Agriculture National Institute of Food and Agriculture Video: https://plantpath.wsu.edu/2020/12/15/combating-bacterial-diseases-onion-stop-rot/

Bacterial Bulb Rot Pathogens

Stop the Rot: Combating onion bacterial diseases with pathogenomic tools and enhanced management strategies

Center rot

Pantoea ananatis, Pantoea agglomerans, Pantoea allii

bugwood

Bacterial streak & bulb rot Pseudomonas

viridiflava

Bacterial soft rots

Pantoea agglomerans, Pectobacterium spp.

Sour skin *Burkholderia cepacia*

bugwood

Slippery skin - Burkholderia gladioli pv. alliicola

Enterobacter bulb rot - *Enterobacter cloacae*

Complexity of Accurate Bulb Rot Identifications

- Many bacteria associated with onion bulbs
 - >13 genera
 - Several species within a genus
 - Different strains within a species
 - Some are virulent (cause bulb rots), some are not
- Multi-step process to diagnose bacteria causing rot in onion bulbs
 - Which sections of a rotten bulb to sample?
 - Whether to use surface-sterilization or not (concentration, duration)?
 - What types of agar media to use?
 - What physiological tests are relevant, and what DNA to sequence?
- With deviations at any step, five labs working on the same sample could, conceivably, get five different diagnoses

'Stop the Rot' regional labs in primary onion production regions

Pathogenomic: Using genomics to spot problem pathogens Can you tell these two bacterial strains apart?

Bacterial colonies isolated from onion bulb growing on nutrient agar

Neither can we!

- 99% of the DNA between these two strains is identical
- The differences in the remaining 1% of DNA is what determines whether the strain is pathogenic (= makes onion rot) or not.

Pathogenomics: Using genomics to spot problem pathogens An Analogy – *E. coli* food poisoning

- There are MILLIONS of *E. coli* that live inside of us that are harmless
- It is only the occasional specific strain (e.g. E. coli 0157:H7) that makes us sick (is pathogenic)
- We need to identify the strains that makes us sick in a sea of nonpathogenic strains

Pathogenomics: Using genomics to spot problem pathogens What is Pathogenomics?

- Pathogenomics is genomic research on pathogenic microorganisms
- The **genome** is all the genetic material, the sequence of DNA, of an organism
- Pathogenic microorganisms in our case are onion rot-causing bacteria

Pathogenomics: Using genomics to spot problem pathogens The Process

Step 1: Collect as many strains of a specific bacteria as possible to capture genetic diversity

- Plate out bacterial strains from 100s of onion bulb samples
- Pluck individual colonies off of plates = individual isolate

Zaid et al 2012

Pathogenomics: Using genomics to spot problem pathogens The Process

Step 2: Screen to identify which isolates are aggressive pathogens

- Make a bacterial "broth" (high concentration of bacteria) form a single strain = inoculum
- Inoculate onion scales, bulb, leaf tissue, etc.
- If rot develops, the strain is virulent

Gary E. Kaiser, Ph.D.

Virulent = pathogenic

Non-Virulent = nonpathogenic

Pathogenomics: Using genomics to spot problem pathogens The Process

Step 3: Use genome sequencing to find genes common to only the pathogen strains

- Whole genome sequencing is the process of determining the complete order of genes of the entire DNA of the organism.
- Collect DNA sample for each strain.
- Conduct genome sequencing.
- Compare genomes among different strains
 - Look for <1% of DNA that is different this may confer whether strain does or does not rot onion

Pathogenomics: Using genomics to spot problem pathogens The Process

Step 4: Develop new diagnostics based on the pathogen-specific genes

- Develop tool to that will identify pathogen-specific gene(s) within whole DNA
- Test for accuracy of diagnosis
- Once genetic diagnostic tools are developed, pathogenic bacterial strains can be identified very quickly in comparison to traditional techniques.
- Note, these genetic diagnostic tools are for <u>specific</u> of bacteria
 - Separate tools need to be developed for Pantoea, Burkholderia etc.

Acknowledgements

- USDA NIFA SCRI
- Project team, technical staff, students
- Stakeholder Advisory Panel

More information about the project:

- https://alliumnet.com/projects/stop-the-rot/
- Lindsey du Toit dutoit@wsu.edu

