

EASTERN BROCCOLI SUPPLY CHAIN MODEL Shady S. Atallah¹, Miguel Goméz¹ and Thomas Björkman² (1) Applied Economics and Management, Cornell University, Ithaca, NY, (2) Horticulture, Cornell University NYSAES, Geneva, NY

1-Abstract

Background. Broccoli is a major specialty crop in the United States (U.S.) with a farm-gate value of over \$700,000,000. Rise of transportation costs and interest in local and regional food has led to efforts in the Eastern U.S. aiming at insuring a reliable, year-round supply of Eastern-grown broccoli that will be welcomed in East Coast markets.

Data. We collected data on fresh broccoli acreage, yields, production, and transportation costs from emerging broccoli-producing region in the East Coast (Maine, New York, New Jersey, Pennsylvania, Virginia, Maryland, North Carolina, South Carolina, Georgia, Florida) and the mainstream producing regions of California, Arizona in addition to imports from Mexico and Canada. Wherever data were not available, we visited growers and packer/shippers to complement it.

Methods. We develop a mathematical programming model of the Eastern broccoli distribution system to examine optimal production sites and flows for broccoli grown in the East. The optimization model inputs are: seasonal supply in the aforementioned producing regions; seasonal demand in Eastern metropolitan areas; regional production costs, and seasonal transportation costs. Given these inputs, the model minimizes the total costs of producing and transporting broccoli from supply sites to markets and solves for cost-effective seasonal product flows.

Analysis. We use the model to simulate the impact of increased localization (reduction in the weighted average source distance or WASD), increased Eastern acreage and increase in fuel costs on total costs and optimal allocations and flows.

2- Baseline production and transportation model

Minimize $\sum \sum \sum cost_{i,j} * Q_{i,j,k}$ Select the quantity shipped

from origin *i* to destination *j* in each season *k* that minimizes production and shipping costs Supply constraint_{*i*/*k*}: $\sum_{i,i,k} Q_{i,i,k} \leq \text{supply}_{i,k}$ Quantity shipped from location *i* cannot

exceed supply capacity

3- Baseline solution and localization scenarios

Table 1. Comparison of Weighted Average Source distance (WASD) and costs under cost-minimization (baseline), distance-minimization and WASD reduction Minimization subject to WASD reduction constraints (1, 5, and 10%) 10% 1% 5% change % change value change% change hange % change value 1,577 -1.0% 1,494 -166 -10.0% -17 -83 -5% 657 1.0% 33 695 72 11.6% 5%

					Cos	t-M
	Cost-	Distan				
	Cost- Minimization (Baseline)	value	change	% change	value	ch
WASD (miles)	1,660	1,488	-172	-10.4%	1,643	-
Total costs (\$ million/ year)	623	745	122	19.6%	629	
Production Costs	499	609	110	22.1%	505	
Transportation Costs	124	136	12	9.5%	124	

• An objective of minimizing WASD yields almost 20% higher costs than a cost minimizing objective • An objective of minimizing costs subject to the constraint of reducing WASD by 1, 5 and 10% increases the system costs by 1, 5 and 11.6% respectively when compared to the baseline (without the WASD reduction constraint)

4- Spatial and seasonal increase in broccoli marginal values in the metropolitan Eastern U.S. due to a 1% WASD reduction/localization under current acreage

531

32

6%

1%

568

127

69 13.8%

2.4%

3

Demand constraint_{j,k}: $\sum Q_{i,i,k} \ge demand_{j,k}$

Quantity received in demand location j has to at least meet demand

0.2% 126 0.2

1.2%

25% **2**0% **ंग** 15% **b** 10% **5**%

WASD Total Co

* chang

WASD Total Co

5- Scenarios of increase in Eastern broccoli acreage

production regions based on the marginal values (shadow cost) of land obtained from the baseline optimal solution

• The results are similar with (table 3) and without (table 2) fuel cost increase

Table 2. Scenarios of increase in Eastern broccoli acreage co

		Eastern acreage increase scenarios (5, 15, and 30%)								
		5%			15%			30%		
	Baseline	value	change*	% change	value	change	% change	value	change	% change
) (miles)	1,660	1,644	-16	-1.0%	1,615	-45	-2.7%	1,569	-91	-5.5%
Costs (\$ million/year)	623	622	-1	-0.1%	621	-2	-0.4%	618	-5	-0.8%
Production Costs	499	499	0.4	0.1%	500	1	0.2%	501	2	0.4%
Transportation Costs	124	123	-1	-1.%	121	-4	-2.8%	117	-7	-5.7%
ges are computed with respect to the baseline										

Table 3. Scenarios of simultaneous increase in fuel cost (50%) and Eastern broccoli acreage													
			Eastern acreage increase scenarios with 50% diesel fuel cost increase										
	Baseline	Baseline with	5%			15%			30%				
		50% fuel cost			%								
		increase	value	change*	change	value	change	% change	value	change	% change		
) (miles)	1,660	1,660	1,644	-16	-1.0%	1,615	-45	-2.7%	1,569	-91	-5.5%		
Costs (\$ million/year)	623	752	750	-2	-0.3%	746	-6	-0.8%	740	-12	-1.6%		
Production Costs	499	504	504	0.4	0.1%	505	1	0.2%	505	2	0.4%		
Transportation Costs	124	249	246	-3	-1.0%	242	-7	-2.8%	234	-14	-5.7%		
$r_{\rm exp}$ are computed with respect to the baseline with $\Gamma 00/$ fuel sect increases													

* changes are computed with respect to the baseline with 50% fuel cost increase

30% increase in broccoli acreage achieves a WASD reduction of more than 5% (Table 2) without increasing regional marginal values as in the case where a 5% WASD reduction was targeted without an increase in acreage (table 1 and maps in section 4)

6-Conclusion

A 30% increase in Eastern acreage has the potential to reduce the system costs by 5 million dollars a year under current diesel fuel prices and 12 million dollars if fuel prices increase by 50%. It also reduces the system s carbon footprint: WASD is reduced by 5%, which roughly translates into a reduction in diesel fuel usage of 63,000 gallons/year that is equivalent to a reduction in CO_2 emissions of 1.4 million lbs/year.

There is a significant spatial heterogeneity in the marginal value changes under WASD reduction, even for relatively short distances.

One of the model extensions will be to solve for the optimal locations of new broccoli acreage as well as the optimal location of postharvest facilities.

The model results are point estimates. The next stage of the model involves including stochasticity in Eastern broccoli marketable output.

This work was funded by the USDA's National Institute of Food and Agriculture through the Specialty Crop Research Initiative

Total Costs

Total Costs (higher fuel costs)

• Total costs decrease linearly with an increase in Eastern broccoli acreage

• The rate of decrease in total costs under 50% higher fuel costs is more than twice as much as under the baseline fuel costs

